Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

نویسندگان

  • Iffat Zafar
  • Eran A. Edirisinghe
  • B. S. Acar
  • Helmut E. Bez
چکیده

Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm’s robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Robust Linear Discriminant Analysis for Chemical Pattern Recognition

Linear discriminant analysis (LDA) is an effective tool in multivariate multigroup data analysis. A standard technique for LDA is to project the data from a high-dimensional space onto a perceivable subspace such that the data can be separated by visual inspection. The criterion of LDA, unfortunately, is extremely susceptible to outliers which commonly occur because of instrument drift and gros...

متن کامل

Hybrid Framework for Robust Multimodal Face Recognition

Both two dimensional principal component analysis and fisher linear discriminant analysis are successful face recognition algorithms. Recognition rate, time complexity can be improved by combining the two algorithms with the very powerful tool discrete wavelet transform. Experiments on the ORL face database show that the proposed method outperforms PCA, LDA, DWT+LDA algorithms in terms of recog...

متن کامل

Online Gesture Recognition Using Predicative Statistical Feature Extraction and Multivariate Analysis

A new method for gesture/motion recognition j?om time-varying image sequences is proposed, using predicative statistical feature extraction combined with linear discriminant analysis. The method ofSers natural, eflcient and robust extractiodrepresentation of information about motion and is at the same time computationally inexpensive. Good generalization abilities for gesture recognition are ac...

متن کامل

Statistical integration of temporal filter banks for robust speech recognition using linear discriminant analysis (LDA)

This paper presents a study on statistical integration of temporal filter banks for robust speech recognition using linear discriminant analysis (LDA). The temporal properties of stationary features were first captured and represented using a bank of well-defined temporal filters. Then these derived temporal features can be integrated and compressed using the LDA technique. Experimental results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007